"Occupational Hearing Conservation Program (HCP) Making Hearing Health a Workplace Wellness Priority" Lake Health – Walter Vieweg, DO, D.PM., M.A. Occupational Physician Certified NRCME, MRO, Civil Surgeon, CPS-A Family Physician-Board Certified, Audiologist, Podiatrist and an Aviation Medical Examiner

San Diego State University Environmental Health and Safety

Can You Imagine?

- Not being able to
 - -Hear what the other person is saying?
 - -Listen to the sound of music?
 - -Listen to the sound of nature?

- Being afflicted with
 - Uncomfortable ringing in your ears?Abnormal sounds that interfere with your sleep?

Statistics on **Occupational Hearing Loss** Approximately 30 million Americans are exposed to high intensity noise in their workplace. One in 4 of these workers (or 7.5 million Americans) will develop permanent hearing loss.

National Institute of Deafness and Other Communicative Disorders: Noise Induced Hearing Loss. Available at: <u>http://www.nidcd.nih.gov/health/hearing/noise.asp</u> Accessed November 7, 2004.

Sound Pressure Level

- Sound waves are energy produced by vibrating objects
- The larynx vibrates to produce the voice
- The vibrations create a pattern, which the ear translates into sound
- As you double the distance from a noise source, the source loudness decreases by half
- Strong vibrations from very loud noises can damage the ear

How We Hear Sounds

- Sound waves enter the ear canal striking the eardrum.
- When eardrum vibrates, ossicles conducts vibrations to the cochlea.
- Tiny hairlike cells in cochlea respond to vibrations by generating nerve impulses.
- Brain interprets nerve impulses as sound.

Note: Healthy <u>hair cells</u> are the key to good hearing. Although, some die off naturally as you age, many more are killed early, from unprotected exposure to hazardous noise.

Anatomy and Physiology of Normal Ear

Effects of Noise on Hearing

Note: How quickly hearing loss takes place depends on the **intensity** of the noise, its **duration**, and **how often** the exposure occurs.

Anatomy and Physiology of Healthy Ear

Anatomy and Physiology of Damaged Ear

Anatomy and Physiology of Damaged Ear

How Hearing is Damaged

- Hair-like cells are flattened.
- You do not get used to noise; you gradually loose your hearing
- Once hearing is damaged, it cannot be repaired or replaced.

Symptoms of Overexposure to Noise

- Temporary Threshold Shift
 - muffled sound after noise exposure
 - if continued overexposure, shift can worsen and become permanent
 - resulting in untreatable damage to hearing
- Tinnitus
 - ringing in the head when trying to sleep at night
 - if continued overexposure, ringing can become permanent, constant annoyance

Signs of Hearing Loss

- Difficulty hearing people speak.
- Inability to hear certain high-pitched or soft sounds.
- Noise or ringing in ears.
- Getting complaints that the radio or tv is too loud.

Types of Hearing Loss

Conductive

- Sound is not conducted from outer ear to inner ear
- Reduction in sound level
- Condition results from fluid in middle ear, foreign bodies, infection in ear canal, impacted ear wax, malformation of ear

Sensorineural

- Results from damage to the inner ear or nerve pathways from ear to brain
- Corrected through surgery
- Caused by birth injury, diseases, noise exposure, head trauma, aging
- Mixed
 - Hearing loss resulting from both conductive and sensorineural

Noise Induced Hearing Loss

Noise induced hearing loss stems from exposure to loud noises.

- Constant exposure over a period of time
- Exposed to sound level over 140 dBA
- Tinnitus

Age Induced Hearing loss

- Exposure to high sound levels
- Hereditary
- Nerve damage
- Reduced neuronal response

Effects of Age and Noise on Hearing

Normal Aging Effects

Occupational/Non-Occupational Hearing Loss

Occupational Hearing Loss

- Results from constant exposure to sound levels above 85 dBA TWA
- Damage to hair cells in cochlea
- Non-Occupational Hearing Loss
 - Results from constant exposure to sound levels above 85 dBA TWA
 - Results from damage to outer, middle, or inner ear, hereditary, ototoxic drugs
 - Damage to hair cells in cochlea, damage to nerve cells relaying sound message to brain, damage to structure of ear

Types of Noise

- Pitch
- Loudness
 - Whisper 10 dB
 - Street sound
 - Sander
 - Sporting Events
 - Mowing the Lawn
 - Motorcycle Riding
 - Concerts
 - Shooting Range

70 dB 85 dB 100dB 101dB 112dB 125dB 130dB

Recognizing Occupational Hazardous Noise

Task	Avg. Noise Level (dBA)	Tools	Avg. Noise Level (dBA)
Operating forklift	87	Lathe	81
Cutting Wood	93	Welding	94.9
Cutting lawn	94	Equipment	
Installing trench	95.8	Hand Power Saw	97.2
conduit	00.0	Screw Gun, Drill	97.7
Welding	98.4	Rotohammer	97.8
Grinding	99.7	Chop saw	98.4
Chipping Concrete	102.9	Stationary Power tool	101.8
Working near Generator	116	Chipping Gun	103.0

Recognizing Non-Occupational Hazardous Noise

- Noisy Hobbies
 - Loud music
 - Firearms
 - Car/motorcycle race track
 - Sporting events
 - Loud speakers
- Household noises
 - Crying babies
 - Vacuum
 - Lawn mower
 - Power tools
 - Ipod/Boom box

Hearing Conservation Program (HCP)

 implemented whenever employee noise exposures equal or exceed and 8-hour time-weighted average (TWA) of 85 dBA without attenuation from use of hearing protectors.

Training

- Elements of HCP
- HCP Flow Chart
- Sound Pressure Level Concepts and Terms
- Anatomy and Physiology of Normal Ear
- How We Hear Sounds
- Effects of Noise on Hearing
- Symptoms of Overexposure to Noise
- Anatomy and Physiology of Damaged Ear
- How Hearing is Damaged
- Signs of Hearing Loss
- Types of Hearing Loss
- Noise Induced Hearing Loss
- Occupational/Non-occupational Hearing Loss
- Statistics on Occupational Hearing Loss
- Types of Noise
- Recognizing Hazardous Noise

- Noise Monitoring
- Noise Map (area noise level)
- Noise Dose (personal occupational noise exposure level)
- Table of Permissible Noise Exposure Limits
- Impulsive or Impact Noise
- Noise Control
- Administrative Controls
- Engineering Controls
- Hearing Protectors
- Purpose of Hearing Protectors
- <u>Advantages and Disadvantages of</u> <u>Different Types of Hearing Protectors</u>
- <u>Attenuation of Different Types of Hearing</u> <u>Protectors</u>
- <u>Instructions on Selection, Fitting, Use,</u> <u>and Care of Hearing Protectors</u>
- Audiometric Testing
- Purpose of Audiometric Testing
- Evaluation of Audiogram
- Audiometric Test Requirement
- Explanation of Test Procedures
- Audiometer Calibration
 - Training 🔫
- Record Keeping

Rule of Thumb

When you feel the need to shout in order to be heard 3 feet away, the noise levels are probably 85 dB or more and hearing protectors are recommended.

Elements of Hearing Conservation Program

- Noise Monitoring
- Hearing Protectors
- Audiometric Testing
- Evaluation of Audiogram
- Audiometric Test Requirements
- Audiometer Calibration
- Training
- Record Keeping

Noise Permissible Exposure Limits (PEL)

- Utilize administrative or engineering controls when sound levels exceed Noise Permissible Exposure Levels (Table N-1), e.g. 8 hours permitted duration per workday for 90 dBA sound level.
- Provide hearing protectors if above controls fail to reduce sound levels within Permissible Exposure Levels (Table N-1).
- Impulsive or impact noise should not exceed 140 dB.

Noise Monitoring

- Used to identify work locations where hazardous noise levels exits.
- Employee exposures to noise monitored periodically with:
 - -Sound Level Meter (area noise level)

Noise Dosimeter (personal noise exposure level)

Noise Map (Area Monitoring)

Noise Dose (Personal Monitoring)

Table of Permissible Noise Exposure Limits

Sound Level (dBA)	Permitted Duration per Workday (hours)	Sound Level (dBA)	Permitted Duration per Workday (hours)
90	8.00	103	1.32
91	6.96	104	1.15
92	6.06	105	1.00
93	5.28	106	0.86
94	4.60	107	0.76
95	4.00	108	0.66
96	3.48	109	0.56
97	3.03	110	0.50
98	2.63	111	0.43
99	2.30	112	0.38
100	2.00	113	0.33
101	1.73	114	0.28
102	1.52	115	0.25

Impulsive or Impact Noise

 Exposure to impulsive or impact noise should not exceed 140 dB peak sound pressure level.

Affected Employees

- Employees subjected to noise exceeding permissible noise limits shall be provided hearing protection devices, if feasible administrative or engineering controls failed to reduce noise levels.
- Employee exposed to noise at or above the 8hour time-weighted average (TWA) of 85 dB, or equivalently, a dose of 50% shall be notified and enrolled in HCP.

Noise Control

- Administrative Control
- Engineering Control
- Personal Protective Equipment (hearing protective devices)

Administrative Controls

- Operate noisy equipment on second or third shifts.
- Rotate employees through high-noise areas.
- Modify existing machinery.
- Place noise limit specs. on new equip.
- Maintain equip. in good condition.
- Use noise control when installed.
- Reporting noisy equip. to supervisor for repair.

Engineering Controls

- Reduce noise at the source.
- Interrupt the noise path.
- Reduce reverberation and structural vibration.

Personal Protective Equipment (Hearing Protection Devices - HPD)

- Employers shall provide to employees exposed to 8 hr TWA of 85 dB at no cost.
- Employers shall ensure being worn:
 - by employees exposed to 8 hr TWA of 90dB or greater
 - -by employees exposed to 8 hr TWA of 85dB or greater and:
 - Whose baseline audiogram has not been established
 - Who have experienced a threshold shift

Hearing Protection Use

- Voluntary Use
 - -Exposed to an 8 hr TWA of 85 dB
- Mandatory Use
 - -Exposed to an 8 hr TWA of 90 dB
 - Exposed to an 8 hr TWA of 85 dB but have not had a baseline hearing test
 - Employees who have suffered STS hearing loss and are exposed to an 8 hr TWA of 85 dB

Standard Threshold Shift

- Hearing ability changed by an average of 10 decibels.
- Employee notification within 21 days.
- Revised hearing protection required.
- Further medical evaluation.
- Allowance may be made for the contribution of aging.

Hearing Protection Device (HPD) Noise Reduction

- HPD must reduce employee noise exposure below PEL e.g. below 8 hr TWA of 90 dB.
- Employees with standard threshold shift (STS), HPD must reduce employees noise exposure below an 8 hr TWA of 85 dB.
- Noise Reduction Ratio (NRR)
 - Convert dose to TWA; subtract 7 from NRR; subtract remainder from TWA to obtain the est.TWA under ear protector

Subtract 7 from NRR; subtract remainder from TWA to obtain the est. TWA under ear protector

Employee Responsibility

- Understand the need for hearing protection devices.
- Wear HPDs and seek replacements.
- Encourage co-workers to wear HPDs.
- Communicate problems to supervisors.

Management Responsibility

- Provide occupational noise training.
- Provide hearing protection devices.
- Demonstrate commitment wear HPDs.
- Enforce the use of HPDs.
- Keep up to date with HPD selection and use.
- Encourage questions and resolve problems.

Purpose of Hearing Protectors

Reduction of sound waves traveling to the inner ear

Advantages and Disadvantages of Different Types of Hearing Protectors

Kind of Protector	Advantages	Disadvantages
Ear Plug	 Free head movements Good for tight work spaces Worn with any hairstyle Worn with hats, eye protection, respirators Good protection against 	 Can work loose during the work day Must be replaced periodically Small and can easily be lost
	high frequency sounds	
Ear Muff	 Headband can be adjusted for comfort Seldom come loose during the work day 	•Difficult to wear with eye, head and breathing protection
	•Free head movements	

Attenuation of Different Types of Hearing Protectors

• Ear Plugs

- Reduce noise by as much as 30 decibels

• Ear Canals

- Reduce noise by as much as 30 decibels
- Used when individual is unable to use traditional ear plugs

• Ear Muffs

- Reduce noise by as much as 15-30 decibels
- Use in conjunction with ear plugs when exposed to high noise levels (105+ decibels)

Instructions on Selection, Fitting, Use, and Care of Hearing Protectors Ear plugs -Keep clean and free of materials Wash in mild liquid detergent and warm water Squeeze excess water and air dry -Discard plugs when hardened or do not reexpand Ear Canals -Clean like normal ear plugs -Do not tamper with the headband and the acoustic seal

Instructions on Selection, Fitting, Use, and Care of Hearing Protectors

• Ear Muffs

-Keep clean and free of debris

Clean cushions with warm soapy water

- Do not tamper with the acoustic seal between the cushions and the headband
- -Do not modify the ear muffs in any way
- -Do not stretch or abuse the headband

Purpose of Audiometric Testing

- To measure hearing by sending tones to each ear through headphones.
- To show how one's hearing compares to normal hearing based on age.
- To determine whether hearing is being conserved.
- To alert employee and employer for noise, age or medical related hearing loss.

Audiometric Test Requirements

- Test shall be pure tone, air conduction, hearing threshold exam.
- Test frequencies from 500 to 6000 Hz in each ear.
- Audiometers shall meet ANSI S3.6 and Appendix B
- Audiometric exams administered in room shall meet Appendix C

Explanation of Test Procedures

- Audiometer sends tones to each ear through headphones.
- Listen carefully and respond each time you hear a tone.
- Levels at which you can barely hear the tones is your hearing threshold levels.
- Audiogram records threshold (dB) for different pitches or frequencies (Hertz).

Audiometer Calibration

- Audiometer functional operation shall be checked daily.
- Audiometer calibration shall be checked acoustically annually per Appendix D

Audiometric Testing

- Conducted by a qualified audiologist.
- Baseline Audiogram/Test

 Shows initial hearing status
 For comparison to future audiograms
- Periodic (Annual) Audiogram/Test

 To determine if HCP is effective and if nonnoise factors affects hearing
 - Recheck audiogram or professional referral necessary if significant hearing change occurs

Evaluation of Audiogram

- Annual audiogram compared to baseline audiogram to determine threshold shift
- If threshold shift
 - Employee must be notified in writing within 21 days
- If threshold shift from occ. noise exp.
 - Employee fitted with hearing protectors, trained in use and care, required to use them.
 - Employee refitted with better attenuation hearing protectors and retrained in hearing protector use
 - Refer employee to eval/exam if add. testing necessary or if medical pathology is caused by hearing protectors
 - Inform employee of need to eval/exam if medical pathology unrelated to hearing protectors is suspected

Evaluation of Audiogram (con't)

- If subsequent audiogram to noise exp. less than 8 hr TWA of 90dBA indicates that threshold shift is not persistant:
 - -Inform employee of new audiogram
 - May discontinue required use of hearing protectors

Normal Audiogram and Degree of Hearing Loss

Frequency, Hz (low pitched to high pitched sounds)

Training

- Provide annually to employees who are exposed to noise at or above 8 hr TWA of 85 dB.
- Topics must include:
 - Effects of Noise on Hearing
 - Purpose of Hearing Protectors
 - Advantages and Disadvantages of Different Types of Hearing Protectors
 - Attenuation of Different Types of Hearing Protectors
 - Instructions on Selection, Fitting, Use, and Care of Hearing Protectors
 - Purpose of Audiometric Testing

Record Keeping

- Employee Exposure Measurements
- Audiometric Tests
 - -Audiogram/Noise Exposure Assessment
 - -Job classification
 - -Audiometer calibration date
- Hearing Protection Devices Used
- Audiometric Test Rooms
 - -Background sound pressure level in test room

HCP Flow Chart

- Pre-employment Test
- Noise Map (area noise sound level meter)
- Occupational Noise Exposure (personal noise noise dosimeter)
- Noise Dose
 - > 100% noise control engr. ctrl.; otherwise ppe
 - < 100% audiometric test</p>
- Engr. Ctrl. / PPE audiometric test
- Audiometric Test noise induced hearing loss
 - Yes utilize noise control
 - No continue audiometric test
- Training
- Record Keeping

Summary

- Constant exposure to noise over 85 dB can cause hearing damage.
- Hearing loss can not be cured or repaired.
- Hearing tests are conducted annually.
- Hearing protection devices include ear plugs, ear muffs, and canal caps.

QUIZ

- Employee participation in the Hearing Conservation Program is required when exposed to an 8 hr TWA noise level of ______ decibels.
- 2. Hearing damage can easily be repaired with surgery. True or False
- 3. Describe a sign of hearing loss: _
- 4. Name two off-work activities that may expose you to high-noise levels.
- 5. Your company keeps records of noise monitoring and hearing tests. True or False

QUIZ

- 6. A noise dosimeter is used to test an employee's hearing capability.True or False
- 7. Describe one of the ways noise impacts the workplace.
- 8. Name two kinds of hearing protection devices: and
- 9. In order to look for hearing loss, how often are hearing tests conducted?
- 10. Name one of the ways management attempts to control employee noise exposure:

Lake Health Occupational Services

- Call 855-LAKE-OCC (855-525-3622) for OSHA hearing conservation services.
- Or contact Chris Brill-Packard at 440-479-8644 or email: <u>chris.brill-packard@lakehealth.org</u>